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SLEPIAN'S INEQUALITY VIA THE =
CENTRAL LIMIT THEOREM e
ot
LA
By o
"
Fred W. Huffer
s
We give a proof of Slepian's (1962) inequality which does not ;
N
rely on Plackett's identity or geometric arguments. The proof uses a =
partial ordering of distributions which is preserved under convolutions E i
3
k‘
and scale transformations. Slepian's inequality may be formulated in *-J’t
ictr
o
terms of such a partial ordering. The properties of this partial e
e
ordering allow us to obtain results for the multivariate normal distri- :\::
r.
bution by using the central limit theorem. :‘”
Kok
Tchen (1980) also noted the preservation under convolution -
).
property and from this obtained Slepian's inequality in the bivariate o ~_
\
case. Further information and references concerning partial orderings
Wy,
W
of probability distributions may be found in Eaton (1982) or Chapter 1
8
of Stoyan (1983). g{t :
AN
Let F be a collection of bounded continuous real-valued functions {fy‘\-’,
defined on Rk. Suppose that F is invariant under both translations and
scaling, that is, for any bellk, ¢c>0 and fefF, the function g E}.
!
defined by g(x) = f(cx+b) also belongs to F. Define X<<Y 4if X and 3'
Y are random vectors satisfying Ef(X) < Ef(Y) for all feF. _
' N
A
Our object will be to prove inequalities concerning multivariate :i‘
N %1
normal distributions. Let I and A be any kxk covariance matrices. ,':(“'
Let x* and Y ©be k-dimensional normal random vectors with EX =EY =0,
L)
%
-
X 2







* *
cov X* = 3, covY = A. We wish to determine if X << Y* in which case
we also say that I <<A., The following result can sometimes be used to

make this determination.

*
Proposition 1l: Let x* and Y  be as given above. Suppose the random

vectors X and Y satisfy EX =EY =0, covX =3I, covY = A, If
X<<Y, then X*<<Y*.

In our application X and Y will be chosen to have simple
discrete distributions so that the relationship X<<Y 1is easy to

verify.

Proof: First note that

(a) If U,V,W are independent with U<<V, then U+W<<V+W .,

This follows by conditioning on the value of W and using the translation

invariance of F. Let xl,xz,x3,...

Yl’YZ’Y3"" be 1.1.d. copies of Y. Since X<<Y, using (a) twice in

be i.1.d. copies of X and

succession gives x1+x2 << Y1+x2 << Y1+Y2. By induction we obtain

X 4Ky +eeot X << Y1+Y2 oot Yn. By the scale invariance of F,
(b) U<<V implies cU<<cV for all c > 0.
-1/2 -1/2
Thus n (x1+x2+...+xn) <<n (Y1+Y2+ +Yn). Now let n + = and use

the Central Limit Theorem to obtain X* << Y*.

The next proposition is useful in extending the ordering << to

broader class of covariance matrices.

>
x

Al‘. ﬁ:”

)
.-I

e, 2,
E"s"s‘s‘w.q.
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Proposition 2: Suppose Al and A2 are any kxk covariance matrices YN
g l‘

satisfying A1 << Az. Define T = Az-Al. Choose t >0, If I and i
™
I+t are both nonsingular covariance matrices, then I <<I+tT. :;::::
M‘:“:’
h :0":
Proof: Let 01,02,453 denote kxk covariance matrices. In terms of :»:‘_::}
covariance matrices (a) and (b) become: “Q‘;
il

oS
n' a4

)

(c) 9, <<, implies &+ <<0,+0, . e,
:‘-.

(d) ¢, <<9, implies c® <<cd, for all c >0 . E;::IE
o

C
These are used }mplicitly in the following argument. Choose A small ::o:;;
o
enough so that both (X-GAl) and (Z+tI‘-€A1) are positive definite :52
\ D‘|.
OGO
whenever 0 < € < A, By taking convex combinations of these matrices we s
find that (Z+SI'-€A1) is positive definite (and therefore a covariance -.
LA

0N
matrix) when 0 <s <t and 0 <e <A, Now t"z

N

AN
.,i._

I+l = (2+sI‘-eA1) + e!\l << (2+sI‘-eA1) + eAz =L+ (s+e)l ., Ao
o]
;

Here we have used A, <<A,. Thus I+sT<<I+(s+e)I for 0<s <t and =
0 <e<A. Since A does not depend on s, it is clear that e
n® e
L<<IL+tl' as desired. h
f::"o'

For x = (xl,xz,...,xk) and y = (yl,yz,...,yk) define —

TN

v m - o
Xvy ("1")'1”‘2 vy2"”’x'kvyk) and xAy (xlAyl’szYZ””’xkAyk) ::'
ACH

where Vv and A denote the maximum and minimum respectively. A function :':3
. L(‘

f defined on Rk is called L-superadditive if f(x)+f(y) < f(xvy)+f(xAy) ‘
N

=
R

N

! e e “n \:.::;‘;;i-; ~. - vy '..,\t'-u'. > -.‘.A.’_-.Ena\:n_;':v:-! ....t-:-:,s:\ii:':. -



for all x and y. This condition was introduced by Lorentz (1953) who
also showed that when f has continuous second partial derivatives, f
is L-superadditive if and only if

2

g—xfiafz-z_o for all x and all 1#j .

13
See Marshall and Olkin (1979) for further information on L-superadditivity.

Proposition 3: Let F be the class of bounded, continuous, L-superadditive

functions on Rk. Suppose I = (oij) and I = (nij) are kxk non-

singular covariance matrices. If Oii ™ Ty4 for all i and cij < “ij

for all i #j, then I<<I,

This result is very similar to Proposition 1 of Joag-dev, Perlman
and Pitt (1983) and it easily implies Slepian's inequality as given in
Slepian (1962). The argument needed to obtain Slepian's inequality is

basically the same as that in Corollary 1 of Joag-dev, et al.

Proof: Let a,8,90,4 be k-dimensional vectors defined by

ap-l, aq--l, ai=0 for i#p or q,
Bp--l, Bq-l, 81-0 for i#p or q,

ep-eq-l, 91-0 for i#p or q,

¢p'¢q =-1, ¢,=0 for i¢p or q,

Define the random vectors X and Y by
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P{X’Q} = P{X-B} = -]-'-’ P{Yce} = P{Y=¢} -% .

Since avpf =9 and aAB = ¢, it is clear that X<<Y. Now applying
Proposition 1 leads to a corresponding ordering between normal random

vectors with covariance matrices
covX =5PY and covy = TP

where the entries of SP? and TPY are given by Sgg = Sgg =1,

sPq 2 sP9 2 1 and sPY =0 otherwise, TPY = TP® = P9 . [P? .
Pq qp ij PP qq Pq qp

and T?} = 0 otherwise. Since p and q are arbitrary, we have shown
sP9 << TP1 for a11 P # q. Now we can use (c) and (d) to deduce that

Al << A2 where

A =X b, sPa, Ay= I b quq
p,q P4 psq P

P<q pP<q

and bpq are arbitrary nonnegative numbers. Choose b

13 = ("ij°°ij)/2

for all i<j. Now using Proposition 2 with T = AZ-I\l = [[-Z completes

the proof.

| Aceecsion Tor

b wTic %1

[

boen

1 ~ hl

|

bg ) —_

! R

| Ry ——

b

CoDicy,

! Aval Lity (%
‘.' ‘«X ‘-AJ‘

Dtist . \
I l

‘/ﬁ?"lj i

~'-"-"'.'.’ ”

W A R AR I U T I s I S AP




References

Eaton, M.L. (1982). A review of selected topics in multivariate prob-

ability inequalities. Ann. Statistics, 10, 11-43.

Joag-dev, K., Perlman, M.D., and Pitt, L.D. (1983). Association of

normal random variables and Slepian's inequality. Ann. Probability,

11, 451-455.
Lorentz, G.G. (1953). An inequality for rearrangements. Amer. Math.

Monthly, 60, 176-179.

Marshall, A.W., and Olkin, I. (1979). Inequalities: Theory of Majorization

and Its Applications. Academic Press, New York.

Slepian, D. (1962). The one-sided barrier problem for Gaussian Noise.

Bell System Tech. J., 41, 463-501.

Stoyan, D., and (edited with revisions by) Daley, D.J. (1983). Comparison

Methods for Queues and Other Stochastic Models. John Wiley and

Sons, New York.
Tchen, A.H. (1980). Inequalities for distributions with given marginals.

Ann. Probability, 8, 814-827.

RO
Sy o Ay A
Al

C XS

y

»
L/ "5.‘*-

y} 1-
DO

i hJ ." LA

o

SN




o P . 2 Y

g - Rl S . ~ B ) A Ny e - 4.
kg g i iCRR R, th Fla Wt o R LY e T TR R - v

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE BEF o o D e RM
1. REPORT NUMBER

2. GOVT AC ON NO. RECPIENT'S CATALOG NUMBER
% ADATITE S

4. TITLE (and Subdtitte) S. TYPE OF REPORT & PERIOD COVERED

Slepian's Inequality Via The . TECHNICAL REPORT
Central Limit Theorem

S. PERFORMING ORG. REPORT NUMBER

pr—— —
7. AUTHOR(s)

5. CONTRACT OR GRANT NUMBER(s)

Fred W. Huffer N00014-86-K-0156

9. PERFORMING ORGANIZATION NAME AND ADORESS 10. PROGRAM ELEM

RROGRAM ELEMENT. PROJECT, TASK
Department of Statistics REA & WORK UNIT NUM
Stanford University NR~042-267
Stanford, CA 94305

11, CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Office of Naval Research August 5, 1986
Statistics & Probability Program Code 1111. 13. NUMBER OF PAGES

7
14. MONITORING AGENCY NAME & ADDRESS(If dillerent {rom Controlling Oftice) 18. SECURITY CLASS. (of this repors)
UNCLASSIFIED

185a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

18. OISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the adetract entered In Block 20, If diflerent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverss eide if necessary and identily by block number)

Slepian's inequality, partial orderings of distributions,
L-superadditive functions, multivariate normal distribution.

20. AISTRACT (Continue on reverse eide il ry end identity by block ber)

We define a partial ordering of distributions which is preserved under
convolutions and scale transformations. Some properties of this partial

ordering are developed and then used to give a new argument for Slepian's
(1962) inequality.

DD ,"0%™, 1473 eoiTion oF 1 NOV 6313 OmsOLETR
1JAN T /N 0102-014- 6601 1 UNCLASSIFIED

7 SECURITY CLASSIFICATION OF THIS PAGE (When Date Bntered)

/
‘; "y

A

o
N







AL et AN
DA DDA

S AN IS

L




